Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2001207

RESUMEN

Cells and tissues respond to perturbations in multiple ways that can be sensitively reflected in the alterations of gene expression. Current approaches to finding and quantifying the effects of perturbations on cell-level responses over time disregard the temporal consistency of identifiable gene programs. To leverage the occurrence of these patterns for perturbation analyses, we developed CellDrift (https://github.com/KANG-BIOINFO/CellDrift), a generalized linear model-based functional data analysis method that is capable of identifying covarying temporal patterns of various cell types in response to perturbations. As compared to several other approaches, CellDrift demonstrated superior performance in the identification of temporally varied perturbation patterns and the ability to impute missing time points. We applied CellDrift to multiple longitudinal datasets, including COVID-19 disease progression and gastrointestinal tract development, and demonstrated its ability to identify specific gene programs associated with sequential biological processes, trajectories and outcomes.


Asunto(s)
COVID-19 , COVID-19/genética , Humanos , Modelos Lineales
2.
Dev Cell ; 57(1): 112-145.e2, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1587971

RESUMEN

The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.


Asunto(s)
Pulmón/citología , Pulmón/fisiología , Diferenciación Celular/genética , Bases de Datos como Asunto , Humanos , Pulmón/metabolismo , Regeneración/genética , Análisis de la Célula Individual/métodos
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1387715

RESUMEN

Cytolytic T-cells play an essential role in the adaptive immune system by seeking out, binding and killing cells that present foreign antigens on their surface. An improved understanding of T-cell immunity will greatly aid in the development of new cancer immunotherapies and vaccines for life-threatening pathogens. Central to the design of such targeted therapies are computational methods to predict non-native peptides to elicit a T-cell response, however, we currently lack accurate immunogenicity inference methods. Another challenge is the ability to accurately simulate immunogenic peptides for specific human leukocyte antigen alleles, for both synthetic biological applications, and to augment real training datasets. Here, we propose a beta-binomial distribution approach to derive peptide immunogenic potential from sequence alone. We conducted systematic benchmarking of five traditional machine learning (ElasticNet, K-nearest neighbors, support vector machine, Random Forest and AdaBoost) and three deep learning models (convolutional neural network (CNN), Residual Net and graph neural network) using three independent prior validated immunogenic peptide collections (dengue virus, cancer neoantigen and SARS-CoV-2). We chose the CNN as the best prediction model, based on its adaptivity for small and large datasets and performance relative to existing methods. In addition to outperforming two highly used immunogenicity prediction algorithms, DeepImmuno-CNN correctly predicts which residues are most important for T-cell antigen recognition and predicts novel impacts of SARS-CoV-2 variants. Our independent generative adversarial network (GAN) approach, DeepImmuno-GAN, was further able to accurately simulate immunogenic peptides with physicochemical properties and immunogenicity predictions similar to that of real antigens. We provide DeepImmuno-CNN as source code and an easy-to-use web interface.


Asunto(s)
COVID-19/inmunología , Péptidos/inmunología , SARS-CoV-2/inmunología , Algoritmos , COVID-19/virología , Aprendizaje Profundo , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Péptidos/genética , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Programas Informáticos , Linfocitos T/inmunología , Linfocitos T/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA